Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films
Publication Type
Journal Article
Authors
Ganpule, C.S, A.L Roytburd, V Nagarajan, B.K Hill, S.B Ogale, E.D Williams, Ramamoorthy Ramesh, J.F Scott
DOI
Abstract
The time-dependent relaxation of remanant polarization in epitaxial lead zirconate titanate (formula presented) ferroelectric thin films, containing a uniform two-dimensional grid of 90° domains (c axis in the plane of the film), is examined using voltage-modulated scanning force microscopy. 90° domain walls preferentially nucleate 180° reverse domains during relaxation, which grow and coalesce as a function of relaxation time. Relaxation is seen to saturate at different levels depending on the write voltage. Late (saturation) stages of relaxation are accompanied by pinning and faceting of the domain walls (drastically reducing the wall mobility), which is direct evidence of the role of defect sites and crystallographic features on polarization relaxation. The kinetics of relaxation is modeled through the nucleation and growth Johnson-Mehl-Avrami-Kolmogorov theory with a decreasing driving force. © 2001 The American Physical Society.
Journal
Physical Review B - Condensed Matter and Materials Physics
Volume
65
Year of Publication
2002
ISSN
10980121
Notes
cited By 6