Multifunctional, self-assembled oxide nanocomposite thin films and devices

Publication Type

Journal Article

Authors

DOI

Abstract

Complex oxides provide an ideal playground for exploring the interplay among the fundamental degrees of freedom: structural (lattice), electronic (orbital and charge), and magnetic (spin). In thin films and heterostructures, new states of matter can emerge as a consequence of such interactions. Over the past decade, the ability to synthesize self-assembled nanocomposite thin films of metal oxides has provided another pathway for creating new interfaces and, thus, new physical phenomena. In this article, we describe examples of such materials systems explored to date and highlight the fascinating multifunctional properties achieved. These include enhanced flux pinning in superconductors, strain-enhanced ferroelectricity, strain- and charge-coupled magnetoelectrics, tunable magnetotransport, novel electrical/ionic transport, memristors, and tunable dielectrics. Copyright © 2015 Materials Research Society.

Journal

MRS Bulletin

Volume

40

Year of Publication

2015

ISSN

08837694

Notes

cited By 39

Research Areas