Mechanism(s) for the suppression of the switchable polarization in PZT and BaTiO3

Publication Type

Conference Paper

Authors

Abstract

Switchable polarization can be significantly suppressed in ferroelectric (FE) materials by optical, thermal, and electrical processes. The thermal process can occur by either annealing the FE in a reducing environment or by heating it in air to 100 °C while impressing a bias near the switching threshold. The optical process occurs while biasing the FE near the switching threshold and illuminating with bandgap light. And the electrical suppression effect occurs by subjecting the FE to repeated polarization reversals. Using electron paramagnetic resonance, polarization-voltage measurements, and charge injection scenarios, we have been able to elucidate both electronic and ionic trapping effects that lead to a suppression in the amount of switchable polarization in FE materials. The relative roles of electronic and ionic effects in the same material can depend on the stress condition. For instance, in oxidized BaTiO3 crystals, optical and thermal suppressions occur by electronic domain pinning; electrical fatigue in the BaTiO3 crystals also appears to involve electronic charge trapping, however, it is suggested that these electronic traps are further stabilized by nearby ionic defects. In sol-gel PZT thin films with either Pt, RuO2, or La-Sr-Co-O electrodes it appears that the polarization suppression induced by electrical fatigue, a temperature/bias combination, or a light/bias combination are all primarily due to the trapping of electronic charge carriers to first order.

Journal

Materials Research Society Symposium - Proceedings

Volume

361

Year of Publication

1995

ISSN

02729172

Notes

cited By 10

Research Areas