Fabrication of La0.7Sr0.3MnO3/La0.5Sr0.5CoO3/ La0.7Sr0.3MnO3 heterostructures for spin valve applications
Publication Type
Authors
Editors
Abstract
Epitaxial growth of oxide heterostructures, which may be utilized in spin valve applications, has been demonstrated. The heterostructures consist of two ferromagnetic layers separated by a non-magnetic metallic interlayer. The ferromagnetic material used is the manganese perovskite oxide, La0.7Sr0.3MnO3, while the metallic oxide interlayer is La0.5Sr0.5CoO3. X-ray diffraction spectra demonstrate the high structural quality of the heterostructures. The magnetization of the heterostructure as a function of magnetic field measured at room temperature yields a double hysteresis loop that is characteristic of this type of spin valve structure. The behavior of this double hysteresis loop is also examined as a function of the metallic interlayer thickness.
Journal
Volume
Year of Publication
ISSN
Notes
cited By 0