Electrically Reversible Cracks in an Intermetallic Film Controlled by an Electric Field

Publication Type:

Journal Article

Source:

Nature Communications, Volume 9, Number 41 (2018)

Date Published:

01/2018

Abstract:

Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field ( 0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on–off ratio of more than 108 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 107 cycles under 10-μs pulses, without catastrophic failure of the film.