Columnar defect induced phase transformation in epitaxial La0.7Ca0.3MnO3 films

Publication Type

Journal Article

Authors

DOI

Abstract

Epitaxial La0.7Ca0.3MnO3 thin films on the SrTiO3(100) surface have been irradiated with 250 MeV Ag17+ ions at different nominal fluence values in the range of 5 × 1010-4 × 1011 ions/cm2, resulting in columnar defects. At low fluences these defects cause changes in material properties that are small and scale linearly with dosage. Above a threshold fluence value ∼3 × 1011 ions/cm2 dramatic changes are observed, including an order of magnitude increase in the resistivity and 50 K drop in the Curie temperature. Transmission electron microscopy measurements show that the changes are associated with a phase transformation of the undamaged region between the columnar defects. The transformed phase has a diffraction pattern very similar to that seen in charge-ordered La0.5Ca0.5MnO3. We propose that above a critical level of ion damage, strains caused by the presence of the columnar defects induce a charge-ordering phase transition that causes the observed dramatic changes in physical properties. We speculate that a conceptually similar surface-induced charge ordering may be responsible for the "dead layer" observed in very thin strained films, and the dramatic changes in optical properties induced by polishing, and that an impurity-induced charge ordering causes the extreme sensitivity of properties to lattice substitution. © 2000 American Institute of Physics.

Journal

Journal of Applied Physics

Volume

87

Year of Publication

2000

ISSN

00218979

Notes

cited By 28

Research Areas